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Abstract

A mesh-free least-squares-based finite difference (LSFD) method is applied for solving large-amplitude free vibration

problem of arbitrarily shaped thin plates. In this approximate numerical method, the spatial derivatives of a function at a

point are expressed as weighted sums of the function values of a group of supporting points. This method can be used

to solve strong form of partial differential equations (PDEs), and it is especially useful in solving problems with

complex domain geometries due to its mesh-free and local approximation characteristics. In this study, the displacement

components of thin plates are constructed from the product of a spatial function and a periodic temporal function.

Consequently, the nonlinear PDE is reduced to an ordinary differential equation (ODE) in terms of the temporal function.

The accuracy, simplicity and efficiency of this mesh-free method are demonstrated for plates with simple as well as complex

shapes. The ODE solutions obtained allow one to investigate the effect of large deflection amplitude on the vibration

frequencies or periods.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When flexural deflection amplitudes are small relative to the plate thickness, the effect of in-plane forces can
be neglected and the free vibration problem is governed by a linear fourth-order partial differential equation
(PDE) if the classical thin plate theory is adopted. However, when the vibration amplitudes are not small,
in-plane stretching (and thus in-plane forces) becomes significant and this effect has to be taken into
consideration, otherwise the frequencies will be under-predicted. Therefore, for large-amplitude free vibration
of plates, some nonlinear terms that account for the effect of in-plane forces should be included in the
governing PDE (see for example, Refs. [1–3]). The resulting nonlinear PDE is much more difficult to solve
than the original linear PDE. So far, no exact solution to this nonlinear PDE for any shape of plate has been
given in the literature, although some approximate analytical and numerical solutions have been reported.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In obtaining these approximate solutions, Chu and Herrmann [4] used a perturbation procedure to solve the
nonlinear PDE directly and approximately for the case of rectangular plates with simply supported,
immovable edges. Yamaki [5] extended the work of Chu and Herrmann [4] by treating rectangular and circular
plates with various boundary conditions. Based on Berger’s hypothesis [6], Wah [7] solved a simplified
nonlinear PDE in which the in-plane forces are replaced by a single membrane force. He considered
rectangular plates with two simply supported edges opposite to each other. Mei [8] also used Berger’s
hypothesis in his finite element formulation for the large-amplitude free vibration of rectangular plates. In the
aforementioned studies, the fundamental nonlinear frequencies were obtained.

More recently, some researchers turned their attention to computing the higher modes of large-amplitude
free vibration of plates. Rao et al. [9,10] used a finite element formulation together with the Ritz procedure for
determining the nonlinear frequencies of rectangular and circular plates with various boundary conditions.
Mei et al. [11] also applied a finite element formulation for analyzing large-amplitude free vibration of plates
with different shapes. Wang et al. [12] used a boundary integral equation formulation for square and circular
plates with various boundary conditions. Shi and Mei [13] used a finite element time domain modal
formulation for tackling square and L-shaped plates. Kurpa et al. [14] used an R-function method for some
complicated plate shapes. Barik and Mukhopadhyay [15] constructed a new stiffened plate element for the
analysis of arbitrarily shaped plates with stiffeners.

In this study, following the work by Chu and Herrmann [4], Wah [7] and Mei [8], the mode shapes of large-
amplitude free vibration are assumed to be similar to their linear small-amplitude counterparts. In other
words, the effect of in-plane forces on the mode shapes and the effect of vibration mode coupling are
neglected. By using the mesh-free LSFD method, the linear frequencies and corresponding mode shapes can
be readily obtained for arbitrarily shaped plates. The modal in-plane displacements can be solved from their
coupling relations with the mode shapes. The real transverse and in-plane displacements of plates are assumed
as a product of a spatial function (mode shapes or modal in-plane displacements) and a periodic temporal
function. This assumption leads to the reduction of the nonlinear governing PDE into an ordinary differential
equation (ODE) in terms of the temporal function. The coefficients associated with the temporal function in
the ODE can be calculated from the derived modal transverse deflection and modal in-plane displacements.
With the appropriate initial conditions, the temporal function can be easily solved numerically, and the large-
amplitude free vibration frequencies or periods determined.

For more information on the use of mesh-free methods that are closely related with the present study in
solving structural problems, one may refer to Refs. [16–26].

2. Least-squares-based finite difference (LSFD) method

In this section, the methodology of the LSFD method is briefly described. A detailed description of the
method may be obtained from Ding et al. [16]. For an unstructured distribution of points in a computational
domain, as shown in Fig. 1, the index i represents a typical point and ij a group of points near the point i

(hereafter ij is referred to as the supporting points of the point i). For a continuous and differentiable function
f(x, y), the two-dimensional (2D) Taylor series expansion in the D-form can be written as

Df ij ¼ Dxij

qf i

qx
þ Dyij

qf i

qy
þ

Dx2
ij

2

q2f i

qx2
þ

Dy2
ij

2

q2f i

qy2
þ DxijDyij

q2f i

qxqy

þ
Dx3

ij

6

q3f i

qx3
þ

Dy3
ij

6

q3f i

qy3
þ

Dx2
ijDyij

2

q3f i

qx2qy
þ

DxijDy2
ij

2

q3f i

qxqy2
þOðh4

Þ (1)

where Dfij ¼ fij�fi, Dxij ¼ xij�xi, Dyij ¼ yij�yi; (xi, yi) and (xij, yij) are the Cartesian coordinates of the points i

and ij, respectively; fi and fij are the function values at the points i and ij, respectively; qfi/qx represents the
value of qf/qx at the point i, and other expressions for derivatives in Eq. (1) have similar meanings; h in O(h4)
is the mean distance from the supporting points ij to the point i.

In LSFD method, the derivatives in Eq. (1) are considered as unknowns. Eq. (1) has nine unknowns,
i.e., two first-order derivatives, three second-order derivatives and four third-order derivatives. In order to
determine the nine unknowns, we need nine independent equations which can be obtained by applying Eq. (1)
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Fig. 1. A computational domain with an unstructured distribution of points.
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at nine supporting points and neglecting the truncation errors O(h4) in Eq. (1). The resulting system of
equations may be expressed in a compact form:

Df i ¼ Si df i (2)

where

Df i ¼ Df i1 Df i2 � � � Df i9

h iT
(3)

df i ¼
qf i

qx

qf i

qy

q2f i
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(5)

In the matrix St, the entries are the coefficient factors of the derivatives in Eq. (1).
In order to solve Eq. (2), we need to invert the matrix St. It has been observed that the matrix St tends to be

ill-conditioned numerically when one or more of the supporting points are very close to the reference point i,
i.e. Dxij � 0; Dyij � 0 for some j. In addition, it was found that the matrix St may become singular when some
supporting points are very close to each other. To overcome this difficulty, the radius di of the supporting
region (see Fig. 1) is used to scale the local distance (Dxij,Dyij), i.e.

Dx̄ij ¼
Dxij

di

; Dȳij ¼
Dyij

di

(6)

The local scaling process is equivalent to introducing a diagonal matrix Di of the form

Di ¼ diag ðdi; di; d
2
i ; d

2
i ; d

2
i ; d

3
i ; d

3
i ; d

3
i ; d

3
i Þ (7)
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In view of Eq. (2), we can write

Df i ¼ Si df i (8)

where

Si ¼ SiD
�1
i ; df i ¼ Di df i (9a,b)

By local scaling, the condition number of the matrix Si becomes lower than the original matrix Si. On the
other hand, the point distribution in the LSFD method could be random. The irregular point distribution may
also cause the matrix Si to be ill-conditioned or even singular, which cannot be improved by local scaling. In
order to overcome this difficulty, we can introduce the weighted least-squares optimization to determine the
unknown vector df i in the approximate Eq. (8). This process is described below.

Apply Eq. (1) at m supporting points ij (j ¼ 1,2,y,m; m49) for the reference point i so as to approximate
the values of Dfij. The same form of Eqs. (2)–(9) can be obtained by following a procedure that is similar
to the one discussed above, except that the vector Dfi in Eq. (3) and the matrix Si in Eq. (5) have to be
modified, i.e.,

Df i ¼ Df i1 Df i2 � � � Df im
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The unknown vector df i in Eq. (8) will be obtained by minimizing the summation of the weighted squares of
the approximation errors of Eq. (8). This summation is given by

Ji ¼
Xm

j¼1

V ij Df ij �
X9
k¼1

ðSiÞj;k � ðdf iÞk

" #2
¼ ðDf i � Si df iÞ

TViðDf i � Si df iÞ (12)

where

Vi ¼ diagðV i1;Vi2; . . . ;V imÞ (13)

is the weighting function matrix with compact support, i.e., the values of Vij (j ¼ 1,2,y,m) are chosen in such
a way that the supporting point closer to the reference point i has a greater influence on the function value at
the point i. The weighting function that is normally adopted is

V ij ¼
ffiffiffiffiffiffiffiffi
4=p

p
ð1� r2ijÞ

4 (14)

where r̄ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

ij þ Dy2
ij

q
=dip1, and di is the radius of supporting region of point i. Other forms of weighting

functions may also be used, such as

V ij ¼ 1=rij (15a)

Vij ¼ 1� 6r2ij þ 8r3ij � 3r4ij (15b)

V ij ¼ 1=r4ij (15c)

In order to find df i, we need to minimize Ji by making

qJi

qðdf iÞ
¼ �2S

T

i ViðDf i � Si df iÞ ¼ �2ðS
T

i ViDf i � S
T

i ViSi df iÞ ¼ 0 (16)
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From this equation, we have

df i ¼ ðS
T

i ViSiÞ
�1S

T

i ViDf i (17)

In Eq. (17), it is observed that the number of supporting points m for each point i should be sufficiently large
so as to ensure that the matrices ðS

T

i ViSiÞ are invertible at all points i in the domain O.
The final LSFD formulations can be derived from Eqs. (9b) and (17) as

df i ¼ D�1i ðS
T

i ViSiÞ
�1S

T

i ViDf i (18)

In order to simplify this formulation, the following matrices are defined:

Ti ¼ D�1i ðS
T

i ViSiÞ
�1
ðS

T

i ViÞ (19)

In view of Eq. (19), Eq. (18) may be rewritten as

df i ¼ TiDf i (20)

where Dfi and dfi are vectors given by expressions (10) and (4), respectively, and Ti 2 R9�m.
From the foregoing process, it is observed that for the 2D case, LSFD formulation (20) is derived by using

the 2D Taylor series expansion with the first nine truncated terms. Higher-order LSFD schemes, which
approximate derivatives of a function with a higher order of accuracy, can be derived by using the 2D Taylor
series expansions with more terms. The formulations for higher-order LSFD schemes have the same form as
Eq. (20).

The significance of the formulation (20) is that it expresses/approximates the derivatives at a point i with the
forms of weighted summations of the function values at the point i itself and a set of its supporting points ij,
for j ¼ 1,2,y,m. Any set of points i and ij, and even all the points in the problem domain, can be scattered.
There is no specific connection between the points. Hence no mesh is required for discretization of the
derivatives and PDEs. Furthermore, no meshing is required for solving the strong form of PDEs because there
is no need for numerical integration. Therefore, this method is indeed mesh-free. As this method originates
from a 2D Taylor series expansion (akin to the traditional FDM that originates from 1D Taylor series
expansion) and the least-squares technique is adopted, this approach has been named the LSFD method.

3. Equations of motion for vibrating plates

For an isotropic, elastic thin plate with uniform thickness h, the longitudinal and rotary inertia forces can be
assumed to be negligible. Accordingly, the equations of motion are given by [1]

qNx

qx
þ

qNxy

qy
¼ 0 (21a)

qNy

qy
þ

qNxy

qx
¼ 0 (21b)

Dr4w� Nx

q2w

qx2
þNy

q2w
qy2
þ 2Nxy

q2w
qxqy

� �
¼ �rh

q2w

qt2
(21c)

where

D ¼
Eh3

12ð1� n2Þ
(22a)

Nx ¼ Bð�x þ n�yÞ (22b)

Ny ¼ Bð�y þ n�xÞ (22c)

Nxy ¼
1� n
2

Bgxy (22d)
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B ¼
Eh

1� n2
(22e)

�x ¼
qu

qx
þ

1

2

qw

qx

� �2

(22f)

�y ¼
qv

qy
þ

1

2

qw

qy

� �2

(22g)

gxy ¼
qu

qy
þ

qv

qx
þ

qw

qx

qw

qy
(22h)

In Eqs. (21) and (22), w is the lateral deflection, u and v the displacements of plate mid-surface elements in
the x and y directions, r the mass density, t the time, D the flexural rigidity, E the Young modulus, n the
Poisson ratio, B the extensional rigidity, Nx, Ny and Nxy the in-plane force components, ex, ey and gxy the in-
plane strain components at the mid-surface of the plate.

4. Boundary conditions

The boundary conditions for the restrained edges considered herein are given below:
�
 Simply supported, immovable edge

w ¼ 0;
q2w
qn2
þ n

q2w

qs2
¼ 0; u ¼ v ¼ 0 (23a,b,c)
�
 Clamped, immovable edge

w ¼ 0;
qw

qn
¼ 0; u ¼ v ¼ 0 (24a,b,c)

In Eqs. (23b) and (24b), n and s represent local coordinates normal and tangential, respectively, to the
boundary at a boundary point.

5. Numerical solution

The substitution of Eqs. (22) into (21a,b) yields

q2u
qx2
þ

1� n
2

q2u

qy2
þ

1þ n
2

q2v
qxqy

¼ �
qw

qx

q2w

qx2
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2
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� �
�

1þ n
2

qw

qy

q2w

qxqy
(25)

1þ n
2

q2u
qxqy

þ
1� n
2

q2v

qx2
þ

q2v
qy2
¼ �

qw

qy

1� n
2

q2w

qx2
þ

q2w
qy2

� �
�

1þ n
2

qw

qx

q2w

qxqy
(26)

For harmonic vibration, and by observing the relations between u, v, w implied in Eqs. (22f–h), (25)
and (26), we can assume the expressions for u, v, w as

wðx; y; tÞ ¼W ðx; yÞHðtÞ (27a)

uðx; y; tÞ ¼ Uðx; yÞH2ðtÞ (27b)

vðx; y; tÞ ¼ V ðx; yÞH2ðtÞ (27c)
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where W(x,y), U(x,y) and V(x,y) are the vibrating amplitudes of a plate element on the mid-surface in the
transversal (z-) and longitudinal (x- and y-) directions, respectively, and they are merely functions of the 2D
spatial coordinates (x, y); H(t) is a periodic function of time.

By substituting Eqs. (27) into (25), (26) and (21c), and making use of Eqs. (22), we obtain

q2U
qx2
þ

1� n
2

q2U
qy2
þ

1þ n
2

q2V
qxqy

¼ �
qW

qx

q2W
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� �
�
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qxqy

(28a)
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þ
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q2V
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� �
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� �2
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1
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0
BBBBBBBBBBB@
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CCCCCCCCCCCA

H3 tð Þ

¼ �l2L
W

a4o2
L

d2HðtÞ

dt2
(28c)

where

lL ¼ oLa2

ffiffiffiffiffiffi
rh

D

r
(29)

is the frequency parameter of the linear small-amplitude free vibration of a plate, oL the corresponding
angular frequency, and a the characteristic length of the plate. If one converts the time quantity t into a
nondimensional time quantity t and transforms the temporal function H(t) into HðtÞ such that

t ¼ oLt (30)

HðtÞ ¼ H
t
oL

� �
¼ HðtÞ (31)

then Eq. (28c) can be transformed into the form

ðr4W ÞHðtÞ �
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qx
þ
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� �2
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� �2
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2
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� �2
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þ

1

2

qW

qx

� �2
" # !

q2W

qy2
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qU

qy
þ

qV
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þ
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qW
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� �
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H
3
ðtÞ

¼ �l2L
W

a4

d2HðtÞ
dt2

(32)

Eq. (32) can be regarded as an ODE of the function HðtÞ, and it should be satisfied everywhere in the plate
domain theoretically. As pointed out by Chu and Herrmann [4] and Wah [7], the effects of in-plane forces on
the mode shapes W(x,y) and the effects of coupling of different modes can be neglected in large-amplitude free
vibration of plates. Therefore, W(x,y) in Eq. (32) can be determined from the mode shapes of the small-
amplitude free vibration when its frequency parameter is lL, i.e., W(x,y) and lL can be solved from the linear
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differential equation [3]

r4W ¼
l2L
a4

W (33)

By using the LSFD formulation (20), the left-hand side of Eq. (33) can be discretized at an interior
point i as

r4W i ¼
Xm

j¼1

Ti
ðr2Þ;jðr

2W ij �r
2W iÞ (34)

where Ti
ðr2Þ;j
¼ Ti

3;j þ Ti
4;j , and Ti

3;j ; Ti
4;j are the elements of the third row and fourth row of the coefficient

matrix Ti. If the point ij is on a straight simply supported edge, then the boundary condition r2W ij ¼ 0 can be
substituted into Eq. (34). If the point ij is on a curved simply supported edge, then the boundary condition
r2W ij ¼ �½ð1� nÞ=rij �ðqW ij=qnÞ can be substituted into Eq. (34), where the positive sign is for convex edge,
the negative sign for concave edge, rij the radius of curvature of the edge curve at point ij and qWij/qn the slope
of W in the normal direction to the edge at point ij [17]. If the point ij is on a clamped edge, then r2W ij in
Eq. (34) can be further discretized as

r2W ij ¼
q2W ij

qx2
þ

q2W ij

qy2
¼
Xm

k¼1

T
ij
1;k

qW ijk

qx
�

qW ij

qx

� �
þ
Xm

k¼1

T
ij
2;k

qW ijk

qy
�

qW ij

qy

� �
(35)

and the boundary conditions qWij/qx ¼ 0, qWij/qy ¼ 0 can be substituted into Eq. (35) as well as into Eq. (34).
After implementing one boundary condition of simply supported or clamped edge, the remaining derivatives
in the right-hand side of Eq. (34) can be further discretized into a form of weighted summation of the function
values of W at a group of points. If any boundary point is involved in this summation, the boundary condition
W ¼ 0 for simply supported or clamped edges can be implemented. Finally, Eq. (33), which is collocated at all
interior points i ¼ 1,y,n, can be discretized into the following system of algebraic equations:

Aw ¼
l2L
a4

w (36)

where A 2 Rn�n, w ¼ ½W 1 . . .W n�
T. The linear frequency parameters lL and mode shapes w can be derived by

solving the eigenvalues and eigenvectors of the matrix A.
Upon the availability of linear vibration mode shapes w, the large-amplitude vibration mode shapes can be

derived by proper scaling of the vector w. The displacements U and V can then be solved from Eqs. (28a, b)
and necessary boundary conditions, which are given by U|G ¼ V|G ¼ 0 for the immovable condition at the
plate edge G.

Numerically, one can calculate the coefficients in Eq. (32) as follows:

Xn
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ðr4W iÞ

" #
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12

h2

qUi

qx
þ

1

2

qW i

qx

� �2
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Eq. (37) can be simplified to the form

d2HðtÞ
dt2

¼ aHðtÞ þ bH
3
ðtÞ (38)
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(39)
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(40)

From Eqs. (39) and (40), it is observed that the determination of a and b requires the condition ofPn
i¼1W ia0. However, for some vibration modes,

Pn
i¼1W i tends to be zero. In such cases, one can keep the

original form of Eq. (32) which collocates at points where WiX0 and swap the signs of Eq. (32) which
collocates at points where Wio0, and then summing them together to form an equation that is similar to
Eq. (37).

In Eq. (40), the low order derivatives of U, V, W can be calculated by using the formulation (20) directly.
The high-order derivative r4W i can be calculated by using following discretization:

r4W i ¼
Xm

j¼1

Ti
ðr2Þ;jðr

2W ij �r
2W iÞ

¼
Xm

j¼1

Ti
ðr2Þ;j

Xm

k¼1

T
ij

ðr2Þ;k
ðW ijk �W ijÞ �

Xm

j¼1

Ti
ðr2Þ;jðW ij �W iÞ

" #
(41)

In order to solve Eq. (38), two initial conditions are needed and they are

ðHÞt¼0 ¼ 1;
dðHÞ

dt

� �
t¼0
¼ 0 (42a,b)

Eq. (38) can be solved numerically by using the finite difference method. The procedural steps are
as follows:

Step 1: Set a time increment Dt.
Step 2: When t ¼ 0,

ð €̄HÞt¼0 ¼ aðHÞt¼0 þ bðH
3
Þt¼0 ¼ aþ b (43a)

!
ðHÞt¼Dt � 2ðHÞt¼0 þ ðHÞt¼�Dt

ðDtÞ2
¼

2ðHÞt¼Dt � 2ðHÞt¼0

ðDtÞ2
¼ aþ b (43b)

! ðHÞt¼Dt ¼ ðHÞt¼0 þ
1
2
ðDtÞ2ðaþ bÞ ¼ 1þ 1

2
ðDtÞ2ðaþ bÞ (43c)

Step 3: For j ¼ 1,2,3,y,

ð €̄HÞt¼jDt ¼ aðHÞt¼jDt þ bðH
3
Þt¼jDt (44a)

!
ðHÞt¼ðjþ1ÞDt � 2ðHÞt¼jDt þ ðHÞt¼ðj�1ÞDt

Dtð Þ2
¼ aðHÞt¼jDt þ bðH

3
Þt¼jDt (44b)

ðHÞt¼ðjþ1ÞDt ¼ 2ðHÞt¼jDt � ðHÞt¼ðj�1ÞDt þ ðDtÞ
2
½aðHÞt¼jDt þ bðHÞ3t¼jDt� (44c)
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Step 4: Plot HðtÞ curve or observe the data result of HðtÞ for the period TNL. For example, if we find the
period of t of the function HðtÞ is

oLTNL ¼ k2p (45)

and since oLTL ¼ 2p, then the ratio of the nonlinear vibration period to the linear vibration period is

TNL=TL ¼ k (46)

6. Results and discussion

By using the LSFD method, the linear frequency parameters (lL), normalized mode shapes
ðW : W 	W=WmaxÞ, and nonlinear-to-linear period ratios (TNL/TL) are obtained for various plate shapes
and boundary conditions. The effect of large vibrating amplitudes on the vibrating frequencies or periods is
indicated by the ratios TNL/TL that change with the relative vibrating amplitudes Wmax/h. In order to confirm
the accuracy and availability of the LSFD method, the convergence study of LSFD solutions are performed
by increasing the number of points in the plate domain and by adopting different orders of LSFD schemes.
For all cases, we adopt the LSFD formulations given by Eq. (20) that are derived from the Taylor series
expansions (1) with 20 and 27 truncated terms. The LSFD solutions are compared with exact or approximate
solutions (if available) from other sources. The versatility of the LSFD method is established by the fact that
the method is able to furnish accurate solutions for higher vibration modes, arbitrary plate shapes and various
boundary conditions.

In Table 1, the LSFD linear frequency parameters lL and period ratios TNL/TL of the first three vibration
modes of a simply supported square plate are presented. We have used two random distributions of points in
the square domain (i.e. 441 points and 1156 points) and the aforementioned two LSFD schemes to study the
convergence behavior of the LSFD solutions. It is observed that the lL values obtained by LSFD for all the
three modes converge to the exact values [3] when the number of points increases and the higher-order LSFD
scheme is adopted. The TNL/TL values corresponding to the relative vibrating amplitudes Wmax/h ¼ 0, 0.2, 0.4,
0.6, 0.8 and 1.0 are presented in Table 1. The effect of large vibrating amplitude on the period of the plate can
be observed clearly; i.e., when the vibrating amplitude becomes larger, the vibration of plate tends to be faster
due to the presence of larger stretching in-plane forces generated in the plate. These TNL/TL values also
converge well and they agree closely with the results obtained by Chu and Herrmann [4], Wah [7], Mei [8] and
Rao et al. [9].

In Section 5, we expect that the coefficients in Eq. (32) can be calculated by using the form of Eq. (37); i.e.,
in order to get the global vibration characteristics of the plate, we wish to collocate Eq. (32) at all the interior
points on the plate domain and then summing them up. However, by performing this operation, it is found
that the ratio TNL/TL does not approach the expected value of 1.0 as the relative vibrating amplitude Wmax/h
approaches zero. One realizes that Eq. (32) should be satisfied everywhere on the plate domain theoretically,
but from a numerical standpoint, the solutions to W, U and V obtained in the vicinity of the plate edges may
not be sufficiently accurate. This inaccuracy causes the coefficients of Eq. (32) collocating at points near plate
edges to deviate too much from the exact values, and finally leads to large errors in the summation form of Eq.
(37). This problem may be overcome by employing the following measure. For each plate case, we can find a
constant c:0oco1 via a numerical test such that

TNL=TL ! 1:0 as Wmax=h! 0

by collocating Eq. (32) only at points i where W ij jXc Wmaxj j and taking the resulting equations into account in
the summation form of Eq. (37).

The LSFD normalized mode shapes ðW Þ of the first three free vibration modes of the simply supported
square plate are presented in Fig. 2. We can observe that for the first mode, W40 for the whole interior
domain of plate. For this case, the summation form of Eq. (37) can be directly formed without swapping the
signs of Eq. (32) collocated at interior points before the summation is done. However, for the second and third
modes, W40 for half area of the plate, but Wo0 in the other half. For these two cases,

Pn
i¼1W i tends to zero
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Fig. 2. Free vibration mode shapes of a SSSS square plate: (a) first mode, (b) second mode and (c) third mode.
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Table 1

Linear frequency parameters (lL ¼ oLa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) and period ratios (TNL/TL) of a simply supported square plate (a ¼ 1)

Number of points Order of schemea lL Wmax/h

0 0.2 0.4 0.6 0.8 1.0

LSFD Fundamental mode

441 20 19.7344 1.0 0.9827 0.9359 0.8713 0.8003 0.7307

441 27 19.7393 1.0 0.9827 0.9360 0.8715 0.8006 0.7310

1156 20 19.7386 1.0 0.9827 0.9360 0.8715 0.8007 0.7311

1156 27 19.7392 1.0 0.9827 0.9360 0.8715 0.8007 0.7312

Rao et al. [9] – 1.0 0.9818 0.9331 0.8670 0.7958 0.7271

Mei [8] – 1.0 0.9821 0.9338 0.8673 0.7943 0.7233

Chu and Herrmann [4] – 1.0 0.9809 0.9297 0.8602 0.7853 0.7131

Wah [7] – 1.0 0.9783 0.9210 0.8451 0.7653 0.6901

Leissa [3] 19.7392b – – – – – –

LSFD Second mode

441 20 49.2781 1.0 0.9785 0.9219 0.8467 0.7673 0.6924

441 27 49.3479 1.0 0.9813 0.9314 0.8632 0.7894 0.7178

1156 20 49.3388 1.0 0.9793 0.9246 0.8514 0.7735 0.6995

1156 27 49.3480 1.0 0.9813 0.9313 0.8631 0.7892 0.7177

Rao et al. [9] – 1.0 0.9773 0.9182 0.8393 0.7564 0.6786

Leissa [3] 49.3480b – – – – – –

LSFD Third mode

441 20 78.6596 1.0 0.9820 0.9337 0.8673 0.7950 0.7244

441 27 78.9615 1.0 0.9825 0.9352 0.8701 0.7988 0.7289

1156 20 78.9155 1.0 0.9824 0.9350 0.8697 0.7982 0.7282

1156 27 78.9568 1.0 0.9825 0.9352 0.8701 0.7987 0.7288

Rao et al. [9] – 1.0 0.9825 0.9353 0.8704 0.7996 0.7305

Leissa [3] 78.9568b – – – – – –

aNumber of truncated terms in Eq. (1).
bExact values.
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obviously. We need to keep the original form of Eq. (32) which collocates at points where WiX0 and swap the
signs of Eq. (32) which collocates at points where Wio0, and then summing them up to form an equation that
is similar to Eq. (37).

Table 2 and Fig. 3 present the LSFD linear frequency parameters lL, period ratios TNL/TL, and normalized
mode shapes W of a clamped square plate for the first three vibration modes. Two point distributions
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Table 2

Linear frequency parameters (lL ¼ oLa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) and period ratios (TNL/TL) of a clamped square plate (a ¼ 1)

Number of points Order of scheme lL Wmax/h

0 0.2 0.4 0.6 0.8 1.0

LSFD Fundamental mode

441 20 35.9564 1.0 0.9929 0.9723 0.9409 0.9018 0.8582

441 27 35.9732 1.0 0.9915 0.9672 0.9307 0.8861 0.8374

1156 20 35.9812 1.0 0.9941 0.9770 0.9504 0.9168 0.8785

1156 27 35.9847 1.0 0.9941 0.9770 0.9505 0.9169 0.8787

Rao et al. [9] – 1.0 0.9930 0.9731 0.9427 0.9052 0.8637

Mei [8] – 1.0 0.9938 0.9750 0.9466 0.9116 0.8750

Yamaki [5] – 1.0 0.9916 0.9716 0.9380 0.8980 0.8566

Leissa [3] 35.982a – – – – – –

35.986b

LSFD Second mode

441 20 73.1904 1.0 0.9859 0.9473 0.8921 0.8294 0.7656

441 27 73.3525 1.0 0.9840 0.9404 0.8796 0.8117 0.7443

1156 20 73.3636 1.0 0.9891 0.9583 0.9132 0.8598 0.8035

1156 27 73.3908 1.0 0.9879 0.9541 0.9050 0.8478 0.7884

Rao et al. [9] – 1.0 0.9860 0.9478 0.8942 0.8337 0.7725

Leissa [3] 73.40c – – – – – –

LSFD Third mode

441 20 107.461 1.0 0.9840 0.9405 0.8796 0.8118 0.7444

441 27 108.063 1.0 0.9829 0.9365 0.8723 0.8018 0.7325

1156 20 108.106 1.0 0.9879 0.9541 0.9051 0.8480 0.7887

1156 27 108.203 1.0 0.9879 0.9541 0.9050 0.8478 0.7884

Rao et al. [9] – 1.0 0.9870 0.9514 0.9015 0.8451 0.7880

Leissa [3] 108.22c – – – – – –

aLower bound value.
bUpper bound value.
cValues from Table 4.22 in Leissa [3].

Fig. 3. Free vibration mode shapes of a CCCC square plate: (a) first mode, (b) second mode and (c) third mode.

W.X. Wu et al. / Journal of Sound and Vibration 317 (2008) 955–974966
(441 points and 1156 points) and the two LSFD schemes are adopted to study the convergence behaviors of
the LSFD solutions. In Table 2, it can be seen that the lL values obtained by LSFD for all the three modes are
in very close agreement with the data presented in Leissa [3]. The TNL/TL values also agree well with the data
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Table 3

Linear frequency parameters (lL ¼ oLa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) and period ratios (TNL/TL) for the fundamental modes of a square plate (a ¼ 1) with

different boundary conditions

Number of points Order of scheme lL Wmax/h

0 0.2 0.4 0.6 0.8 1.0

LSFD SSCC plate

441 20 27.0418 1.0 0.9873 0.9522 0.9014 0.8426 0.7819

441 27 27.0530 1.0 0.9874 0.9523 0.9017 0.8431 0.7825

1156 20 27.0523 1.0 0.9896 0.9605 0.9174 0.8660 0.8114

1156 27 27.0541 1.0 0.9897 0.9605 0.9174 0.8661 0.8116

Rao et al. [9] – 1.0 0.9864 0.9499 0.8994 0.8435 0.7871

Mei [8] – 1.0 0.985 0.960 0.912 0.860 0.806

Leissa [3] 27.10 – – – – – –

LSFD SCSC plate

441 20 28.9379 1.0 0.9889 0.9578 0.9122 0.8584 0.8018

441 27 28.9502 1.0 0.9890 0.9581 0.9127 0.8591 0.8027

1156 20 28.9491 1.0 0.9912 0.9664 0.9290 0.8834 0.8339

1156 27 28.9508 1.0 0.9913 0.9664 0.9290 0.8835 0.8341

Rao et al. [9] – 1.0 0.9904 0.9634 0.9231 0.8750 0.8235

Mei [8] – 1.0 0.9919 0.9675 0.9307 0.8858 0.8370

Leissa [3] 28.946 – – – – – –

LSFD CCCS plate

441 20 31.8061 1.0 0.9896 0.9604 0.9173 0.8658 0.8112

441 27 31.8212 1.0 0.9897 0.9607 0.9178 0.8666 0.8122

1156 20 31.8234 1.0 0.9931 0.9733 0.9430 0.9050 0.8626

1156 27 31.8258 1.0 0.9923 0.9704 0.9370 0.8958 0.8502

Rao et al. [9] – 1.0 0.9907 0.9646 0.9262 0.8807 0.8322

Mei [8] – 1.0 0.994 0.975 0.944 0.905 0.865

Leissa [3] 31.83 – – – – – –

LSFD SSSC plate

441 20 23.6385 1.0 0.9861 0.9476 0.8928 0.8304 0.7668

441 27 23.6463 1.0 0.9852 0.9445 0.8870 0.8221 0.7568

1156 20 23.6453 1.0 0.9870 0.9508 0.8989 0.8390 0.7774

1156 27 23.6463 1.0 0.9870 0.9509 0.8989 0.8390 0.7775

Rao et al. [9] – 1.0 0.9848 0.9440 0.8877 0.8258 0.7645

Mei [8] – 1.0 0.984 0.954 0.900 0.844 0.784

Leissa [3] 23.646 – – – – – –
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obtained by Yamaki [5], Mei [8] and Rao et al. [9]. The first three mode shapes of this clamped square plate are
similar to those of the simply supported square plate. The difference between them is that for the simply
supported square plate, the slope of the transverse deflection, qW/qn, is nonzero whereas for the clamped
square plate, qW/qn is constrained to be zero along the plate edges.

In the foregoing problems, all the plate edges are either simply supported or clamped. Next we consider
square plates with a combination of simply supported and clamped edges. Table 3 and Fig. 4 present linear
frequency parameters lL, period ratios TNL/TL, and normalized mode shapes W for the fundamental modes
of square plates with four combinations of boundary conditions, i.e. SSCC, SCSC, CCCS and SSSC. We can
observe that the LSFD results for lL and TNL/TL values converge well and are in good agreement with the
data from previous researchers [3,8,9].
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Fig. 4. Fundamental mode shapes of a square plate: (a) SSCC plate, (b) SCSC plate, (c) CCCS plate and (d) SSSC plate.
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Table 4

Linear frequency parameters (lL ¼ oLR2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) and period ratios (TNL/TL) for the fundamental modes of a circular plate (R ¼ 1)

Number of points Order of scheme lL Wmax/h

0 0.2 0.4 0.6 0.8 1.0

LSFD Simply supported plate

629 20 4.9349 1.0 0.9740 0.9073 0.8219 0.7354 0.6565

629 27 4.9351 1.0 0.9730 0.9038 0.8162 0.7282 0.6486

1237 20 4.9351 1.0 0.9745 0.9087 0.8243 0.7384 0.6598

1237 27 4.9351 1.0 0.9740 0.9071 0.8216 0.7351 0.6561

Mei et al. [11] 4.946 1.0 0.9748 0.9104 0.8284 0.7460 0.6713

Yamaki [5] 4.947 1.0 0.9734 0.9052 0.8185 0.7312 0.6518

Rao et al. [10] – 1.0 0.9744 0.9089 0.8261 0.7432 0.6682

Leissa [3] 4.977 – – – – – –

LSFD Clamped plate

629 20 10.214 1.0 0.9942 0.9774 0.9512 0.9180 0.8802

629 27 10.216 1.0 0.9934 0.9745 0.9453 0.9087 0.8676

1237 20 10.215 1.0 0.9949 0.9800 0.9568 0.9269 0.8925

1237 27 10.216 1.0 0.9949 0.9801 0.9568 0.9270 0.8926

Mei et al. [11] 10.144 1.0 0.9929 0.9724 0.9414 0.9031 0.8609

Yamaki [5] 10.327 1.0 0.9930 0.9730 0.9422 0.9038 0.8608

Rao et al. [10] – 1.0 0.9928 0.9724 0.9413 0.9029 0.8607

Leissa [3] 10.216 – – – – – –
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Next, we consider the large-amplitude vibration of a circular plate as a typical example of a plate with
curved edges. Table 4 and Fig. 5 present lL, TNL/TL and W for the fundamental modes of simply supported
and clamped circular plates. For both boundary conditions, the convergence studies of the LSFD solutions
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Fig. 5. Fundamental mode shapes of a circular plate: (a) simply supported and (b) clamped.
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Fig. 6. Geometry and support conditions of an L-shaped plate.
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were performed by using two point distributions (629 points and 1237 points) and the two orders of LSFD
schemes. It can be seen from Table 4 that all the LSFD solutions for the circular plate are in good agreement
with the results obtained by Leissa [3], Yamaki [5], Rao et al. [10] and Mei et al. [11]. The accurate LSFD
results confirm that the LSFD method can be conveniently used for tackling plates with curve edges.

Previous example problems of square and circular plates can be regarded as problems involving simple
convex domains. What about plates with a concave domain? Such a problem is more difficult to solve
accurately by using a numerical method. For example, one cannot approximate the plate deflection functions
accurately within a concave domain by using the Ritz method with global Ritz functions. Compared to the
Ritz method, the LSFD method possesses two features: (1) mesh-free, i.e. approximation and discretization of
functions, derivatives and PDEs are based on scattered points in problem domains; (2) local approximation,
i.e. approximation and discretization of derivatives are performed in local, much smaller regions (compared to
a global domain) of a domain. These two features allow the LSFD method to accommodate problems with
complex domain shapes, such as concave domains and multi-connected domains. In order to assess the
performance of the LSFD method in handling large-amplitude vibration plate problems with concave
domains, we consider an L-shaped plate and a square plate with semi-circular edge cuts.

Fig. 6 shows the geometry and support conditions of the L-shaped plate. In Table 5 and Fig. 7, the LSFD
linear frequency parameters lL, period ratios TNL/TL and the normalized mode shapes W for the first three
vibration modes of this plate shape are presented. The convergence study of the LSFD solutions is carried out
by using two distributions of points (814 points and 1433 points) and the two LSFD schemes. It can be
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Table 5

Linear frequency parameters (lL ¼ oLa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) and period ratios (TNL/TL) of the L-shaped plate (a ¼ 2)

Number of points Order of scheme lL Wmax/h

0 0.2 0.4 0.6 0.8 1.0

LSFD Fundamental mode

814 20 59.131 1.0 0.9853 0.9449 0.8878 0.8233 0.7582

814 27 58.529 1.0 0.9844 0.9420 0.8823 0.8156 0.7489

1433 20 59.136 1.0 0.9893 0.9592 0.9148 0.8623 0.8066

1433 27 59.055 1.0 0.9892 0.9590 0.9145 0.8617 0.8060

Shi and Mei [13] – – 0.9852 0.9470 0.8937 0.8361 0.7788

Kurpa et al. [14] RFM(a) – – 0.9862 0.9497 0.8977 0.8382 0.7770

RFM(b) – – 0.9901 0.9606 0.9174 0.8651 0.8097

LSFD Second mode

814 20 86.072 1.0 0.9830 0.9369 0.8732 0.8029 0.7338

814 27 86.876 1.0 0.9818 0.9330 0.8660 0.7932 0.7223

1433 20 86.735 1.0 0.9878 0.9539 0.9047 0.8474 0.7878

1433 27 86.746 1.0 0.9869 0.9505 0.8982 0.8380 0.7762

LSFD Third mode

814 20 105.711 1.0 0.9854 0.9452 0.8883 0.8239 0.7590

814 27 106.123 1.0 0.9854 0.9454 0.8886 0.8244 0.7596

1433 20 106.185 1.0 0.9907 0.9642 0.9246 0.8769 0.8254

1433 27 106.229 1.0 0.9901 0.9621 0.9204 0.8706 0.8173

Fig. 7. Free vibration mode shapes of the L-shaped plate with boundary conditions shown in Fig. 6: (a) first mode, (b) second mode and

(c) third mode.
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observed that both lL and TNL/TL values converged, and TNL/TL values agree well with those obtained by Shi
and Mei [13] and Kurpa et al. [14].

Fig. 8 shows the geometry of the square plate with semi-circular edge cuts. The large-amplitude vibration of
this plate with simply supported and clamped edges is analyzed by using the LSFD method. It can be seen that
the four corner regions are connected to the central region of the plate by narrow ‘‘passageways’’. We can
imagine that in order to solve this problem correctly and accurately, a numerical method must be able to
correctly and accurately transform information among all the corner regions and the central region. Such a
requirement may pose difficulties for some numerical methods such as the Ritz method.

Presented in Tables 6 and 7 as well as Figs. 9 and 10 are the linear frequency parameters lL, nonlinear-to-
linear period ratios TNL/TL, and normalized mode shapes W for the first three vibration modes of the simply
supported and clamped square plates with semi-circular edge cuts. For each boundary condition, three
distributions of points (1020, 1552 and 2445 points for simply supported plate; 1020, 1552 and 2916 points for
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Fig. 8. Geometry of a square plate with semi-circular edge cuts.

Table 6

Linear frequency parameters (lL ¼ oLa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) and period ratios (TNL/TL) of the simply supported square plate with edge cuts

(2r=a ¼ 0:4, a ¼ 2)

Number of points Order of scheme lL Wmax/h

0 0.2 0.4 0.6 0.8 1.0

Fundamental mode

1020 20 56.485 1.0 0.9852 0.9446 0.8873 0.8225 0.7573

1020 27 56.530 1.0 0.9835 0.9388 0.8766 0.8076 0.7394

1552 20 56.462 1.0 0.9857 0.9463 0.8903 0.8268 0.7625

1552 27 56.461 1.0 0.9849 0.9436 0.8853 0.8197 0.7539

2445 20 56.459 1.0 0.9862 0.9482 0.8938 0.8318 0.7686

2445 27 56.469 1.0 0.9852 0.9446 0.8872 0.8224 0.7572

Second mode

1020 20 113.875 1.0 0.9785 0.9217 0.8462 0.7668 0.6917

1020 27 113.997 1.0 0.9779 0.9197 0.8429 0.7624 0.6868

1552 20 113.888 1.0 0.9779 0.9197 0.8428 0.7623 0.6866

1552 27 113.913 1.0 0.9711 0.8980 0.8068 0.7165 0.6358

2445 20 113.896 1.0 0.9800 0.9267 0.8550 0.7784 0.7051

2445 27 113.921 1.0 0.9765 0.9152 0.8352 0.7524 0.6755

Third mode

1020 20 134.336 1.0 0.9785 0.9217 0.8462 0.7668 0.6917

1020 27 134.544 1.0 0.9742 0.9079 0.8229 0.7367 0.6579

1552 20 134.324 1.0 0.9780 0.9201 0.8435 0.7632 0.6876

1552 27 134.368 1.0 0.9762 0.9142 0.8335 0.7502 0.6730

2445 20 134.318 1.0 0.9794 0.9247 0.8514 0.7736 0.6996

2445 27 134.375 1.0 0.9767 0.9160 0.8366 0.7542 0.6774

W.X. Wu et al. / Journal of Sound and Vibration 317 (2008) 955–974 971
clamped plate) and the two LSFD schemes are adopted to investigate the convergence behaviors of the LSFD
solutions. It can be seen from the results that the convergence behaviors of lL and TNL/TL values for both
boundary conditions and all three modes are rather stable. The presented mode shapes are also very smooth.
For this plate shape, there is no data in the literature for comparison. But the good convergence behaviors of
the LSFD solutions and the smoothness of the mode shapes for this complicated plate shape, together with the
good results for other previous plate shapes, lend credibility to the correctness and accuracy of the LSFD
method for large-amplitude vibration of plates.
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Table 7

Linear frequency parameters (lL ¼ oLa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) and period ratios (TNL/TL) of the clamped square plate with edge cuts (2r=a ¼ 0:4,

a ¼ 2)

Number of points Order of scheme lL Wmax/h

0 0.2 0.4 0.6 0.8 1.0

Fundamental mode

1020 20 92.765 1.0 0.9937 0.9754 0.9472 0.9117 0.8716

1020 27 92.966 1.0 0.9903 0.9629 0.9221 0.8731 0.8205

1552 20 92.661 1.0 0.9940 0.9766 0.9496 0.9155 0.8768

1552 27 92.625 1.0 0.9928 0.9722 0.9407 0.9014 0.8577

2916 20 92.579 1.0 0.9950 0.9806 0.9579 0.9287 0.8949

2916 27 92.575 1.0 0.9951 0.9807 0.9581 0.9291 0.8955

Second mode

1020 20 177.573 1.0 0.9842 0.9413 0.8810 0.8138 0.7468

1020 27 178.081 1.0 0.9855 0.9457 0.8892 0.8252 0.7605

1552 20 177.505 1.0 0.9885 0.9564 0.9094 0.8543 0.7966

1552 27 177.543 1.0 0.9868 0.9501 0.8975 0.8370 0.7750

2916 20 177.356 1.0 0.9906 0.9642 0.9246 0.8768 0.8253

2916 27 177.427 1.0 0.9903 0.9628 0.9220 0.8729 0.8202

Third mode

1020 20 219.267 1.0 0.9872 0.9517 0.9006 0.8415 0.7805

1020 27 219.951 1.0 0.9851 0.9443 0.8867 0.8216 0.7562

1552 20 219.141 1.0 0.9888 0.9575 0.9116 0.8574 0.8005

1552 27 219.242 1.0 0.9871 0.9514 0.8999 0.8405 0.7793

2916 20 218.891 1.0 0.9915 0.9672 0.9306 0.8859 0.8371

2916 27 219.005 1.0 0.9898 0.9609 0.9182 0.8672 0.8129

Fig. 9. Free vibration mode shapes of the simply supported square plate with semi-circular edge cuts: (a) first mode, (b) second mode and

(c) third mode.

Fig. 10. Free vibration mode shapes of the clamped square plate with semi-circular edge cuts: (a) first mode, (b) second mode and (c) third

mode.
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7. Conclusions

The mesh-free LSFD method has been used to analyze the large-amplitude vibration of elastic, thin plates
with arbitrary shapes and different combinations of boundary conditions. By neglecting the effect of stretching
in-plane forces on the mode shapes and the effects of coupling between different vibration modes, the mode
shapes of the large-amplitude vibration of plates can be regarded as similar to the mode shapes of their linear
small-amplitude vibration counterparts. Therefore, the transverse modal deflection of the plate can be readily
solved by using the LSFD method and the classical thin plate theory for plates with small deflections. The
longitudinal displacements of plate elements can then be calculated from the coupling relations between the
transverse deflection and longitudinal displacements. These relations are given by the equations of motion of
the plate elements in x and y directions. Finally, the equation of motion of plate elements in transversal
direction is transformed into an ODE of a periodic temporal function, from which the frequencies or periods
of the large-amplitude vibration can be solved by using a simple FDM. The effects of large amplitudes on the
vibration periods are reflected by the varying values of the ratio TNL/TL.

As revealed in previous sections, a critical step in the large-amplitude vibration analysis of plates is the
solution of the linear governing PDE of small-amplitude vibration of plates. If accurate solutions can be
obtained for the linear PDE, then accurate solutions for relevant large-amplitude vibration can also be
obtained. As illustrated in this paper, the LSFD method is a powerful tool for tackling this type of problems.
There are two basic features that ensure the high accuracy and versatility of the LSFD method. One is the
mesh-free property that enables the LSFD method to accommodate problems with arbitrary domain shapes.
Another property is the high-order local approximation that enables the method to achieve high accuracy for
solutions. Owing to these two features, the LSFD method has been successfully used to furnish highly accurate
numerical solutions for both linear small-amplitude and nonlinear large-amplitude vibration analysis of plates
with simple and complex domain shapes.
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